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Who am I?

I All-purpose SDR nut

I contributor and user

I . . . who was a bit overly present on the
discuss-gnuradio@gnu.org mailing list

I Got hired by Ettus

. . . and who is ?

I Producer of the USRP series of SDR frontends

I gr-uhd integrates directly in GNU Radio

I http://www.ettus.com

I mostly directly mixing complex baseband receivers, but many
can be used in Low-IF and direct sampling modes!
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Understanding Signals in the Frequency Domain

Fourier states:

Every sufficiently well-behaved1 signal can be reproduced to an
arbitrary amount of precision by combining harmonic functions

Bonus: if they are periodic, it’s only a discrete set of harmonics!

Example: square wave

1i.e. the signals we care about
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Square Wave reconstruction through harmonic functions
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Taking a look at the spectrum

Intuitively, we know that all our sines are just single tones, and will
leave a simple line in the spectrum
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I The Fourier Transform actually does exactly that: Converting
between time domain and frequency domain.

I Allows for negative frequencies and complex signals/spectra; a
bit much math for 30 minutes
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Taking a look at the spectrum
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Why is this important?

I real-world systems always have a bandwidth-limiting, usually
low-pass, behaviour

I that leaves us with only a limited amount of spectrum to
reproduce the original signal
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Remember this slide?



Digital Signal Processing

I works with a digital signal instead of analog things like
voltages, currents

I typically uses software running on processors or specific
hardware to implement all kinds of functionality

I computers are cheap
I good filters are expensive
I software can much easier be written than implementing e.g. a

cell phone in hardware alone



What is a Digital Signal?
formally

Definition:

A digital signal is a signal that

I only takes discrete values, and

I only exists for discrete times.
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Digital Signals
are great!

I can just be represented as series of numbers
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Sampling
Going from Analog to Digital in N discrete Steps
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Sampling
Going from Analog to Digital in N discrete Steps
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Sampling
Reconstructing is easy!
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Sampling – Periodicity in Frequency Domain

I There’s always ambiguity whether the original periodic signal
had frequency f . . .

I or f + fsample . . .

I or f + 2fsample . . .

I or, in fact, f + Nfsample for any N ∈ N.
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Sampling – Periodicity in Frequency Domain

I There’s always ambiguity whether the original periodic signal
had frequency f . . .
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I or, in fact, f + Nfsample for any N ∈ N.



Sampling – Periodicity in Frequency Domain

when considering a digital signal, its spectrum

I can only meaningfully be defined for a bandwidth of fsample ,

I repeats every fsample .



Sampling – Periodicity in Frequency Domain
Aliasing

Hence: Sampling analog signals demands:

bandwidth limited sufficiently (filtered)!

I frequencies at f + Nfsample ending up at f is called aliasing.

I Anti-Aliasing Filter: typically low pass filter

Works the other way around, too – Images every fsample when
DAC’ing → Reconstruction filter



Sampling – Periodicity in Frequency Domain
Undersampling

Alternatively use aliasing

I alias a higher range of spectrum into baseband –
Undersampling

I works well for relatively low frequencies (filters are
easy/affordable/can be build adjustably)

I good high-frequency analog filters expensive/hard to make

I building a receiver working 0–25 MHz just as well as
5.000–5.025 GHz is physically hard

I . . . and expensive: imagine the loads of filters!

I typical frequency agility seen with Ettus USRPs is achieved by
first mixing to baseband, and then digitizing



Spectra of Digital Signals

I Example: impossible to tell whether your signal is cos(πx) or
cos(−πx):
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Spectra of Digital Signals

I Example: impossible to tell whether your signal is cos(πx) or
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I and because we’ve sampled it, it’s fsample-periodic:
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Spectra of Digital Signals

Real Signals: Spectrum is hermitian symmetric

I spectra can be complex (otherwise, we couldn’t represent phase
of a signal)

I <{S(f )} = <{S(−f )}
I ={S(f )} = −={S(−f )}
I Spectrum Analyzer only shows magnitude of spectrum: Can’t

tell sign of ={S}



Spectra of Digital Signals

Real Signals: Spectrum is hermitian symmetric

I Positive half of spectrum fully defines negative half

I if symmetric and fsample periodic. . .

I only half of fsample “usable”

→ Sampling Theorem for real-valued signals



The Shannon-Nyquist Sampling Theorem

For real-valued sampling, the observed bandwidth of the analog signal
must be limited to less than half the sampling rate.
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The Shannon-Nyquist Sampling Theorem
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Example:

I Sound cards sample with 44.1 kHz, 48 kHz or 96 kHz. Human
perception reaches roughly from 10 Hz to 16 kHz.



The Shannon-Nyquist Sampling Theorem

For real-valued sampling, the observed bandwidth of the analog signal
must be limited to less than half the sampling rate.

Example:

I Sound cards sample with 44.1 kHz, 48 kHz or 96 kHz. Human
perception reaches roughly from 10 Hz to 16 kHz.

I Understanding voice possible using lower bandwidths – can find
sampling rates of 16 kHz and below in standards.



The Shannon-Nyquist Sampling Theorem

For real-valued sampling, the observed bandwidth of the analog signal
must be limited to less than half the sampling rate.

Example:
I superheterodyne receiver:mix 1 MHz of signal from 465.5 –

4.665 MHz to 69.5 – 70.5 kHz (fc = 70 MHz).
I when considering 0 Hz – 70.5 MHz, one would need a sampling

rate of at least 141 MHz
I high, but far from impossible (USRPs currently do up to 200

MS/s)
I totally unnecessary!

I when undersampling, sampling rate of 2 MHz is sufficient
I high requirement for quality of band-pass signal
I good SAW filters exist for specific frequencies (reason Superhet

is popular, even analog!)



Looking at a complete system

FM Receiver in GNU Radio



Looking at a complete system

FM Receiver in GNU Radio

USRP Source

I interface to the USRP

I talks to the driver

I configures all analog and DSP aspects of the USRP

I receives samples



Looking at a complete system

DSP in the USRP



Looking at a complete system

FM Receiver in GNU Radio

Frequency Translating FIR filter

I shifts the desired frequency to 0 Hz

I then applies filter

I and decimates on the go



Looking at a complete system

I 2045 tap monster of filter

I . . . runs in real time on old laptop at up to 10 MS/s

I attenuation far above necessity
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Looking at a complete system

FM Receiver in GNU Radio

FM Demodulator

I Calculates instantaneous frequency of signal

I integrates and scales the result

I and decimates to an audio-typical rate on the go



Looking at a complete system

FM Receiver in GNU Radio

Rational Resampler

I No sound card can do 50 kS/s, but they do 48 kS/s
I Interpolate to 48x input rate
I suppress spectral images
I filter and decimate by 50

I In fact, there’s tricks to do the downsampling, filtering and
upsampling without going to 50x input rate



Looking at a complete system

FM Receiver in GNU Radio

Audio Sink

I sends samples to the sound card, which Digital-to-Analog
converts them



Conclusion

I any signal is representable in digital form . . .

I . . . as long as it’s band-limited
I Aliasing can lead to out-of-band overlaying wanted signal

I Anti-Alias Filtering necessary
I Aliasing can be used for good

I DSP is a rich toolbox that allows construction of incredible
filters at very low cost

I SDR hardware gives access to the raw digital signal – great
flexibility

I Toolboxes like GNU Radio make it very easy to build extremely
capable SDR applications



Wrapping things up

I Presentation can be found under

http://marcus.hostalia.de/sdra16.pdf

I Always open for mail! marcus@hostalia.de

http://marcus.hostalia.de/sdra16.pdf
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